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Energy harvesting applications

02/07/2014 - Belo Horizonte (Brazil)

(birdge collapse at FIAT factory)

Wireless Sensor Networks

Energy Harvesting could enable 90% of WSNs applications (IdTechex) 

Environmental MonitoringStructural Monitoring

Transportation

Wearable sensing for health 

applications
Emergency medical response

Monitoring, pacemaker, defibrillators

Military applications
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• Ultra capacitors

• Rechargeable 

Batteries

• Wireless Sensor 

Node

• Piezoelectric

• Electrodynamics

• Photovoltaic

• Hydro Turbine

Wasted thermal energy

Electronic 

device

Energy 

Harvesting 

Generator

Temporary 

Storage 

system

EM energy

Solar

Vibrations

Traffic

Hydro/wind

Power sources available from the ambient 

RF
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Examples of energy harvesting systems
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Crystal radio - 1906

Sailing ship (XVI-XVII century)

Tree - vegetation

Self-charging 

Seiko wristwatch 

First automatic wristwatch, 

Harwood, c. 1929 (Deutsches

Uhrenmuseum, Inv. 47-3543)

First automatic watch. 

Abraham-Louis Perrelet, 

Le Locle. 1776 

http://en.wikipedia.org/wiki/Abraham-Louis_Perrelet


Vibration energy harvesting versus

power requirements 
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Zero Power ??

100-300W/cm3 ?
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Vibration Energy Harvesters (VEHs): basics

Inertial generators are more flexible than direct-force devices because they require 

only one point of attachment to a moving structure, allowing a greater degree of 

miniaturization.

Load (ULP sensors, MEMS 

actuators)

Bridge Diodes 

Rectifier

Cstorag

e ZL

Vou

t
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converter Vibration

Energy 
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RL
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zinc oxide (ZnO) nanowires

Wang et al. 2008

Energy harvesting from 

moth vibrations  

Chang. MIT 2013

Energy Harvesting from dancing
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Vibration

Harvesting

Generator

Magnetostrictive

Piezoelectric

Electromagnetic
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mass
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Vibration Energy Harvesters (VEHs): basics



Piezoelectric conversion

Unpolarized 

Crystal

Polarized 

Crystal

After poling the zirconate-titanate atoms are off center.  

The molecule becomes elongated and polarized

9

Pioneering work on the direct 

piezoelectric effect (stress-charge) 

in this material was presented by 

Jacques and Pierre Curie in 1880

In 1903 Pierre received the Nobel 

Prize in Physics with his wife, Marie 

Skłodowska-Curieand and Henri 

Becquerel, for the research on the 

radiation phenomena discovered by 

Professor Henri Becquerel.
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Piezoelectric conversion

Man-made ceramics

• Barium titanate (BaTiO3)—Barium titanate was the 

first piezoelectric ceramic discovered.

• Lead titanate (PbTiO3)

• Lead zirconate titanate (Pb[ZrxTi1−x]O3 0≤x≤1)—more 

commonly known as PZT, lead zirconate titanate is

the most common piezoelectric ceramic in use 

today.

• Lithium niobate (LiNbO3)

Naturally-occurring crystals

• Berlinite (AlPO4), a rare phosphate mineral that is

structurally identical to quartz

• Cane sugar

• Quartz (SiO2)

• Rochelle salt

Polymers

• Polyvinylidene fluoride (PVDF): exhibits 

piezoelectricity several times greater than quartz. 

Unlike ceramics, long-chain molecules attract and 

repel each other when an electric field is applied.

direct piezoelectric effect

Stress-to-charge conversion

10

Biological

• Bones

• DNA !!!
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Piezoelectric conversion

31 Mode
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• S = strain vector (6x1)  in Voigt notation

• T = stress vector (6x1) [N/m2]

• sE = compliance matrix (6x6) [m2/N]

• cE = stifness matrix (6x6) [N/m2]

• d = piezoelectric coupling matrix (3x6) in Strain-Charge 

[C/N]

• D = electrical displacement (3x1) [C/m2]

• e = piezoelectric coupling matrix (3x6) in Stress-Charge 

[C/m2]

•  = electric permittivity (3x3) [F/m]

• E = electric field vector (3x1) [N/C] or [V/m]
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Conversion techniques comparison

Technique Advantages Drawbacks

Piezoelectric • high output voltages 

• well adapted for 

miniaturization

• high coupling in single 

crystal

• no external voltage source 

needed

• expensive

• small coupling for 

piezoelectric thin films 

• large load optimal 

impedance required (MΩ)

• Fatigue effect

Electrostatic • suited for MEMS 

integration

• good output voltage (2-

10V)

• possiblity of tuning 

electromechanical 

coupling

• Long-lasting

• need of external bias 

voltage

• relatively low power 

density at small scale

Electromagnetic • good for low frequencies 

(5-100Hz)

• no external voltage source 

needed

• suitable to drive low 

impedances

• inefficient at MEMS scales: 

low magnetic field, micro-

magnets manufacturing 

issues

• large mass displacement 

required.
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Human activity

Gorlatova, M et al (2013). Movers and shakers: Kinetic energy harvesting for the internet of things.

Example of vibration sources
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Example of vibration sources

Chicago North Bridge

http://realvibration.nipslab.org

Car in highway

Walking person
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A general model for VEHs
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k

i
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ÿ
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A general model for VEHs

2
2

0 2

2

2 2 2

( )
2 ( )( )

e

c

L c c

P
Y m j

R j m d j k j


 

     


    

0

j ty Y e 

( )

L

L c i L c

mz dz kz V my

V V z



  

    


  

LINEAR mechanical oscillator 21
( )

2
U z kz

2

0
c c

Z mYms ds k

Vs s



 

       
    

      

  

Z 
mY

det A
(s

c
) 

mY (s
c
)

ms3  (m
c
 d)s2  (k 

c
 d

c
)s k

c

,

  

V 
mY

det A


c
s 

mY 
c
s

ms3  (m
c
 d )s2  (k 

c
 d

c
)s k

c

.

Hence, the transfer functions between displacement and voltage over input acceleration are given by

  
H

ZY
(s) 

Z

Y
,    (a)                H

VY
(s) 

V

Y
.     (b)   By substituting s=j in , we can calculate the electrical

power dissipated across the resistive load

Laplace transform

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 16



Piezoelectric conversion

17

2
2 31
31

11 33

.

. E T

El energy d
k

Mech energy s 
 

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a 

piezoelectric material. IT’s defined as the ratio between the mechanical energy converted and the 

electric energy input or the electric energy converted per mechanical energy input

Characteristic PZT-5H BaTiO3 PVDF AlN

(thin film)

d33 (10-10 C/N) 593 149 -33 5,1

d31 (10-10 C/N) -274 78 23 -3,41

k33 0,75 0,48 0,15 0,3

k31 0,39 0,21 0,12 0,23

𝜀𝑟 3400 1700 12 10,5

Strain-charge Stress-charge
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Electromagnetic conversion

Equivalent circuit
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Governing equations

MEMS electrostatic kinetic energy harvester
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• narrow bandwidth that implies 

constrained resonant frequency-tuned 

applications

• Non-adaptation to variable vibration 

sources

• small inertial mass and high resonant 

frequency at micro/nano-scale -> most 

of vibration sources are below 100 Hz

Main limits of resonant VEHs

At 20% off the resonance 

the power falls by 80-90% 
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Beyond linear harvesting systems

Frequency tuning

Wu et al. 2008 

Challa et al. 2008 

Roundy and Zhang 2004 

Piezoelectric cantilever with 

a movable mass

Piezoelectric cantilever with magnetic tuning

Piezoelectric beam with a 

scavenging and a tuning part 

Zhu, et al. (2010). Sensors and Actuators A: Physical
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Beyond linear harvesting systems

Frequency tuning

Tang et al. 2010
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Multimodal Energy Harvesting

Beyond linear harvesting systems

Ferrari, M., et al. (2008). Sensors and Actuators A: Physical

Hybrid harvester with piezoelectric and electromagnetic transduction

mechanisms

Tadesse et al. 2009 

Shahruz 2006 

Piezoelectric cantilever arrays 

with various lengths and tip masses
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H. Kulah and K. Najafi,  IEEE Sensors Journal 8 (3), 261 (2008).

D.G. Lee et al. IEEE porc. (2007)

Frequency-up conversion

Jung, S.-M. et al. (2010). Applied Physics Letters 

Beyond linear harvesting systems

Le, C. P., Halvorsen (2012). Journal of Intelligent Material Systems and 

Structures

Impact electrostatic MEMS generator
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Burrow, S.G and Clare, L.R. IEEE porc. (2007)

Nonlinear systems

Beyond linear harvesting systems

Cottone, F., H. Vocca & L. Gammaitoni, Nonlinear Energy Harvesting. PRL, 102 (2009).
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Governing equations of a single-DOF  

piezo-magnetoelastic model
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       Mechanical vibrations 

Piezoelectric beam 

x 

ÿ 

m 

Opposing magnets 

 

Vout 

Cottone, F., H. Vocca & L. Gammaitoni. PRL, 102 (2009).

Beyond linear harvesting systems
Nonlinear systems for vibration energy harvesting 
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Bistable oscillators for vibration energy harvesting 

Resonant monostableBistable: inter-well and 

intra-well oscillations

Bifurcation point

x

U(x,)

=25mm

x

U(x,)

Cottone, F., H. Vocca & L. Gammaitoni, Nonlinear Energy Harvesting. PRL, 102 (2009).NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone 28



 

Bistable oscillators for vibration energy harvesting 

Resonant monostableBistable: inter-well and 

intra-well oscillations

Bandwith enhancement

when interwell jumps occur

x

U(x,)

=25mm

x

U(x,)
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Buckled beam piezoelectric harvesters

Snapping between buckled states

Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., & Ferrari, V. (2012). Smart materials and structures, 21(3), 035021

stretching

bending

stretching

PP

Bistable oscillators for vibration energy harvesting 
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by applying Euler-Lagrange equations
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gives two coupled second order nonlinear differential equations 

governing the motion of the piezoelectric buckled beam

Where the output voltage is related to the flux linkage  
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Bistable oscillators for vibration energy harvesting 
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Experimental and numerical results

Cottone, F., L. Gammaitoni, H. Vocca, M. Ferrari & V. Ferrari (2012) Smart materials and structures, 21, 2012.

Bistable oscillators for vibration energy harvesting 
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Nonlinear electromagnetic generators for wide 

band vibrational energy harvesting 
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Nonlinear electromagnetic generators for wide 

band vibrational energy harvesting 

Bandwidth

enhancement of 2.5x

with bistability at 0,2 grms
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Université Paris-Est, ESIEE Paris, 

Silicon MEMS electrostatic harvesters. 

• Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F. and T. Bourouina. IEEE TRANSDUCERS 2013.

• R., Guillemet, Basset., P, Galayko, D., Cottone, F., Marty, F. and T. Bourouina. Conf. Proceeding IEEE MEMS 2013.
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MEMS electrostatic kinetic energy harvester

Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). Journal of Micromechanics and Microengineering

24(3), 035001 

Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013). 2013 Transducers & Eurosensors.

Guilllemet, R., Basset, P., Galayko, D., Cottone, F., Marty, F., & Bourouina, T. (2013). 

Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on (pp. 817-820): IEEE.
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F. Cottone, P. Basset Université Paris-Est, ESIEE Paris, 

Silicon MEMS-based electrostatic harvesters. 
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Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013). 

Transducers & Eurosensors.

MEMS electrostatic kinetic energy harvester

Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & 

Bourouina, T. (2014). JMM 24(3), 035001.
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Velocity-amplified mulitple-mass EM VEH

1 1 2 1 2
2

1 2

( 1) ( )i i
f

e m v m em v
v

m m

  




the final velocity of the smaller mass is 

v2f = 2v1f − v2i. 

In the case of equal but opposite initial velocities

v2f = − 3v2i, 

which represents a gain factor of 3x in velocity. 

if 𝑒 = 1 and in the limit of m1 / m2 → ∞, 
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Electromagnetic generators

For a series of n−bodies of progressively

smaller mass that impact sequentially,

the velocity gain is proportional to n.

(Rodgers et al., 2008)
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Velocity-amplified mulitple-mass EM VEH
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Velocity-amplified mulitple-mass EM VEH
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Velocity-amplified mulitple-mass EM VEH
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Velocity-amplified mulitple-mass EM VEH
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Moving coil

Gap magnet 

expansions (iron)

High Q-factor 

springs

Linear low friction 

guides

Base for clamping

Top cap 

NdFeB Magnets

University of Limerick (Ireland) and Bell-Labs Alcatel (USA). 

F. Cottone, G. Suresh, J. Punch - “Energy Harvesting Apparatus Having Improved Efficiency”.  US Patent  n. 

8350394B2 

Prototype 2  with transversal magnetic flux

Velocity-amplified mulitple-mass EM VEH
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Moving coil

Gap magnet 

expansions (iron)

High Q-factor 

springs

Linear low friction 

guides

Base for clamping

Top cap 

NdFeB

Magnets

Velocity-amplified mulitple-mass EM VEH

University of Limerick (Ireland) and Bell-Labs Alcatel (USA). 

F. Cottone, G. Suresh, J. Punch - “Energy Harvesting Apparatus Having 

Improved Efficiency”.  US Patent  n. 8350394B2 

Prototype 2  with transversal flux linkage

Improvement up to a 

factor 10x
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Comparison of various approaches 

Zhu, D., Tudor, M. J., & Beeby, S. P. (2010). 
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Performance metrics

Mitcheson, P. D., E. M. Yeatman, et al. (2008). Proceedings of the IEEE 96(9): 1457-1486.

Bandwidth figure of merit

Frequency range within which the output 

power is less than 1 dB

below its maximum value
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Conclusions

o Marriage between Energy harvesting systems and Zero-power 

Technology will enable autonomous WSN applications

o Energy harvesting systems can be improved by: 

o Nonlinear dynamic: Bistable systems, freqeuncy-up converters, 

impacting masses, electrostatic softening

o Innovative electro-active materials (electrets, lead-free piezo)

o Miniaturization

o Zero-Power Technology has plenty of room for improvement at 

level of  

o Low-consumption components, 

o Efficient conditioning.
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Current technical challenges

o Miniaturization issues

o Improvements of piezoelectric-material properties

o Improving capacitive design

o Increasing magnetic filed in micro magnets

o Research on electrets materials

o Efficient conditioning electronics

o Efficient Integrated design 

o Power-aware operation of the powered device

o Target applications

o Tailoring the WSN technology to specific applications
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