Energy Harvesting: introduction

NiPS Summer School July 7-12th, 2015 Fiuggi, Italy

Francesco Cottone

NiPS lab, Physics Dep., Università di Perugia, Italy francesco.cottone at unipg.it

Energy harvesting applications and principles

- Fundamentals of vibration energy harvesters
- Beyond linear systems: linear and nonlinear approaches

Conclusions

Energy harvesting applications

Wireless Sensor Networks

Structural Monitoring

02/07/2014 - Belo Horizonte (Brazil) (birdge collapse at FIAT factory)

Environmental Monitoring

Transportation

Wearable sensing for health applications

Emergency medical response Monitoring, pacemaker, defibrillators

Military applications

Energy Harvesting could enable 90% of WSNs applications (IdTechex)

Power sources available from the ambient

Examples of energy harvesting systems

Tree - vegetation

Sailing ship (XVI-XVII century)

Crystal radio - 1906

First automatic wristwatch, Harwood, c. 1929 (Deutsches Uhrenmuseum, Inv. 47-3543)

First automatic watch. <u>Abraham-Louis Perrelet</u>, Le Locle. 1776

Self-charging Seiko wristwatch

Vibration energy harvesting versus power requirements

Vibration Energy Harvesters (VEHs): basics

zinc oxide (ZnO) nanowires Wang et al. 2008

Energy harvesting from moth vibrations Chang. MIT 2013

Energy Harvesting from dancing

Inertial generators are more flexible than direct-force devices because they require only one point of attachment to a moving structure, allowing a greater degree of miniaturization.

Vibration Energy Harvesters (VEHs): basics

Stress-to-charge conversion

direct piezoelectric effect

Biological

- Bones
- <u>DNA !!!</u>

Naturally-occurring crystals

- <u>Berlinite</u> (AlPO₄), a rare <u>phosphate mineral</u> that is structurally identical to quartz
- <u>Cane sugar</u>
- <u>Quartz</u> (SiO₂)
- Rochelle salt

Man-made ceramics

- <u>Barium titanate</u> (BaTiO₃)–Barium titanate was the first piezoelectric ceramic discovered.
- <u>Lead titanate</u> (PbTiO₃)
- Lead zirconate titanate ($Pb[Zr_xTi_{1-x}]O_3 \ 0 \le x \le 1$)—more commonly known as *PZT*, lead zirconate titanate is the most common piezoelectric ceramic in use today.
- <u>Lithium niobate</u> (LiNbO₃) Polymers
- <u>Polyvinylidene fluoride</u> (PVDF): exhibits piezoelectricity several times greater than quartz. Unlike ceramics, long-chain molecules attract and repel each other when an electric field is applied.

$$S = [s_E]T + [d^t]E$$
$$D = [d]T + [\varepsilon_T]E$$

Strain-charge

 $T = \left[c^{E}\right]S - \left[e^{t}\right]E$ $D = \left[e\right]S + \left[\varepsilon^{S}\right]E$

Stress-charge

- S = strain vector (6x1) in Voigt notation
- T = stress vector (6x1) [N/m²]
- s_E = compliance matrix (6x6) [m²/N]
- c^Ē = stifness matrix (6x6) [N/m²]
- d = piezoelectric coupling matrix (3x6) in Strain-Charge [C/N]
- D = electrical displacement (3x1) [C/m²]
- e = piezoelectric coupling matrix (3x6) in Stress-Charge [C/m²]
- ϵ = electric permittivity (3x3) [F/m]
- E = electric field vector (3x1) [N/C] or [V/m]

Conversion techniques comparison

Technique	Advantages 🙂	Drawbacks 😕
Piezoelectric	 high output voltages well adapted for miniaturization high coupling in single crystal no external voltage source needed 	 expensive small coupling for piezoelectric thin films large load optimal impedance required (MΩ) Fatigue effect
Electrostatic	 suited for MEMS integration good output voltage (2- 10V) possiblity of tuning electromechanical coupling Long-lasting 	 need of external bias voltage relatively low power density at small scale
Electromagnetic	 good for low frequencies (5-100Hz) no external voltage source needed suitable to drive low impedances 	 inefficient at MEMS scales: low magnetic field, micro- magnets manufacturing issues large mass displacement required.

Example of vibration sources

Human activity

Scenario	\overline{P}
Taking a book off a shelf	$< 10 \ \mu W$
Putting on reading glasses	$< 10 \ \mu W$
Reading a book	$<10 \ \mu W$
Writing with a pencil	10–15 μW
Opening a drawer	10–30 μW
Spinning in a swivel chair	$< 10 \ \mu W$
Opening a building door	$<1 \ \mu W$
Shaking an object	$>$ 3,000 μ W

Activity	Sensing unit	# subjects	Median f	\overline{P} (μ W)			Median r		
	placement		(Hz)	1.9		ercentile	Median	75 th percentile	(Kb/s)
	Trouser pocket	42	N/A	1./			3.1	4.8	0.6
Relaxing	Waist belt	42	N/A	20			2.4	4.8	0.5
	Trouser pocket	42	N/A	2.0			1.4	5.9	0.3
	Shirt pocket	42	1.9	2.0			155.2	186.0	31.0
Walking	Waist belt	42	2.0	2.0			180.3 017	0.3	36.0
	Trouser pocket	42	2.0	• •			202.4 ðl . 3 .) 4.5	40.4
	Shirt pocket	42	2.8	- 2.8			813.3	910.0	162.6
Running	Waist belt	41	2.8				678.3	752.8	135.6
	Trouser pocket	42	2.8	28			612.7 612.7	7.4	122.5
	Shirt pocket	30	3.5	2.0			52.0 U/O.	3.3	10.4
Cycling	Waist belt	29	3.8	28			45.4	.2	9.1
	Trouser pocket	30	1.1	2.0			41.3	59.5	8.3
Walking Running Cycling	Shirt pocket Waist belt Trouser pocket Shirt pocket Waist belt Trouser pocket Shirt pocket Waist belt Trouser pocket	42 42 42 41 42 30 29 30	1.9 2.0 2.8 2.8 2.8 3.5 3.8 1.1	2.0 2.8 2.8 2.8			155.2 180.3 202.4 813.3 678.3 612.7 52.0 45.4 41.3	186.0 3 4.5 910.0 752.8 7.4 .3 .2 59.5	31.0 36.0 40.4 162.6 135.6 122.5 10.4 9.1 8.3

Gorlatova, M et al (2013). Movers and shakers: Kinetic energy har

ternet of things.

Example of vibration sources

http://realvibration.nipslab.org

A general model for VEHs

A general model for VEHs

$$\begin{aligned} \text{INEAR mechanical oscillator} \quad U(z) &= \frac{1}{2}kz^2 \quad \text{Image form} \\ \begin{cases} m\ddot{z} + d\dot{z} + kz + \alpha V_L &= -m\ddot{y} \\ \dot{V}_L + (\omega_c + \omega_i)V_L &= \lambda \omega_c \dot{z} \\ \dot{V}_L + (\omega_c + \omega_i)V_L &= \lambda \omega_c \dot{z} \\ \end{pmatrix} \\ \vec{y} &= Y_0 e^{j\omega t} \quad \text{Image form} \\ (ms^2 + ds + k \quad \alpha \\ -\lambda \omega_c s \quad s + \omega_c \end{pmatrix} \begin{pmatrix} Z \\ V \end{pmatrix} = \begin{pmatrix} -mY \\ 0 \end{pmatrix} \\ Z &= \frac{-mY}{\det A}(s + \omega_c) = \frac{-mY \cdot (s + \omega_c)}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha\lambda\omega_c + d\omega_c)s + k\omega_c}, \end{aligned}$$

.

$$V = \frac{-mY}{\det A} \lambda \omega_c s = \frac{-mY \cdot \lambda \omega_c s}{ms^3 + (m\omega_c + d)s^2 + (k + \alpha \lambda \omega_c + d\omega_c)s + k\omega_c}.$$

Hence, the transfer functions between displacement and voltage over input acceleration are given by

$$H_{ZY}(s) = \frac{Z}{Y}$$
, (a) $H_{VY}(s) = \frac{V}{Y}$. (b) By substituting s=j ω in , we can calculate the electrical power dissipated across the resistive load

$$P_{e}(\omega) = \frac{Y_{0}^{2}}{2R_{L}} \left| \frac{m_{2}\lambda\omega_{c}j\omega}{(\omega_{c}+j\omega)(-m_{2}\omega^{2}+d_{2}j\omega+k_{2})+\alpha\lambda\omega_{c}j\omega} \right|^{2}$$

Strain-charge	Stress-charge
$\mathbf{S} = \mathbf{s}_{\mathbf{E}} \cdot \mathbf{T} + \mathbf{d}^t \cdot \mathbf{E}$	$\mathbf{T} = \mathbf{c}_{\mathbf{E}} \cdot \mathbf{S} - \mathbf{e}^t \cdot \mathbf{E}$
$\mathbf{D} = \mathbf{d} \cdot \mathbf{T} + \boldsymbol{\epsilon}_{\mathbf{T}} \cdot \mathbf{E}$	$\mathbf{D} = \mathbf{e} \cdot \mathbf{S} + \boldsymbol{\epsilon}_{\mathbf{S}} \cdot \mathbf{E}$

Characteristic	PZT-5H	BaTiO3	PVDF	AlN (thin film)	
d ₃₃ (10 ⁻¹⁰ C/N)	593	149	-33	5,1	
d ₃₁ (10 ⁻¹⁰ C/N)	-274	78	23	-3,41	
k ₃₃	0,75	0,48	0,15	0,3	
k ₃₁	0,39	0,21	0,12	0,23	
ε _r	3400	1700	12	10,5	
$k_{31}^2 = \frac{El.energy}{Mech.energy} = \frac{d_{31}^2}{s_{11}^E \varepsilon_{33}^T}$					

Electromechanical Coupling is an adimensional factor that provides the effectiveness of a piezoelectric material. IT's defined as the ratio between the mechanical energy converted and the electric energy input or the electric energy converted per mechanical energy input

Electromagnetic conversion

$$\alpha = Bl / R_L, \qquad \lambda = Bl = \alpha R_L,$$
$$\omega_c = R_L / L_c, \qquad \omega_i = R_i / L_c,$$

Mathematical modeling

Main limits of resonant VEHs

- narrow bandwidth that implies constrained resonant frequency-tuned applications
- Non-adaptation to variable vibration sources
- small inertial mass and high resonant frequency at micro/nano-scale -> most of vibration sources are below 100 Hz

At 20% off the resonance the power falls by 80-90%

Frequency tuning

Frequency tuning

Table 2. Summary of the reported resonance tuning methods.

Author	Methods	Tuning range (Hz)	Tunability, (frequency change average frequency) (%)	Tuning load (force, distance, and voltage)	Energy or power for tuning	Automatic controller
Leland and Wright (2006)	Mechanical (passive)	200–250 (7.1 g tip mass)	22.22	Up to 65 N	_	×
Eichhorn et al. (2008)	Mechanical (passive)	292-380	26.19	Up to 22.75 N	_	×
Hu et al. (2007)	Mechanical (passive)	58.1-169.4	97.85	-50-50 N	_	×
Morris et al. (2008)	Mechanical (passive)	80–235 (can be wider)	≥98.41	\approx 1.25 mm		×
Loverich et al. (2008)	Mechanical (passive)	56-62	10.17	0.5 mm	\downarrow	×
Wu et al. (2008)	Mechanical (passive)	130–180	32.26	21 mm	_	\mathbf{k}
Challa et al. (2008)	Magnetic (passive)	22-32	37.04	3 cm	85 mJ	×
Reissman et al. (2009)	Magnetic (passive)	88-99.38	12.15	1.5 cm	_	×
Zhu et al. (2008)	Magnetic (passive)	67.6–98	36.71	3.8 mm	2.04 mJ/mm	\checkmark
Wu et al. (2006)	Piezoelectric (active)	91.5–94.5	3.23	-	μW level (for controller)	\checkmark
Peters et al. (2009)	Piezoelectric (active)	66–89 (actuator PL140)	29.68	±5V	150 mW (discrete control circuit)	\checkmark
Roundy and Zhang (2005)	Piezoelectric (active)	64.5–67	3.80	5V	440 μW	×
Wischke et al. (2010)	Piezoelectric (semi-passive)	20 (10 mm long electrode)	≈6.7	-65 to +130 V	200 µJ	*

Tang et al. 2010

Multimodal Energy Harvesting

Tadesse et al. 2009

Hybrid harvester with piezoelectric and electromagnetic transduction mechanisms

Piezoelectric cantilever arrays with various lengths and tip masses

Ferrari, M., et al. (2008). Sensors and Actuators A: Physical

Frequency-up conversion

Jung, S.-M. et al. (2010). Applied Physics Letters

H. Kulah and K. Najafi, IEEE Sensors Journal 8 (3), 261 (2008).

D.G. Lee et al. IEEE porc. (2007)

Impact electrostatic MEMS generator

Le, C. P., Halvorsen (2012). *Journal of Intelligent Material Systems and Structures*

Nonlinear systems

Burrow, S.G and Clare, L.R. IEEE porc. (2007)

Cottone, F., H. Vocca & L. Gammaitoni, Nonlinear Energy Harvesting. *PRL*, 102 (2009). NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

Nonlinear systems for vibration energy harvesting

$$U(x,\Delta) = \frac{1}{2} K_{eff} x^{2} + \frac{\mu_{0}}{2\pi} \frac{M_{1}M_{2}}{(x^{2} + \Delta^{2})^{3/2}}$$

$$\begin{cases} m\ddot{x}(t) + \delta\dot{x}(t) + K_{eff} x(t) + \frac{\partial U(x,\Delta)}{\partial x} + K_{v} V(t) = -m\ddot{y}(t) \\ \dot{V}(t) + \frac{1}{\tau} V(t) = K_{c} \dot{x}(t); \qquad \tau = R_{L}C_{p} \end{cases}$$

Cottone, F., H. Vocca & L. Gammaitoni. *PRL*, 102 (2009). NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

Cottone, mmervootce & 21 Garhitvaitoni, Nohindedte Phergy Pranvesting. PRL, 102 (2009).

Buckled beam piezoelectric harvesters

Buckled piezoelectric beams

 $w(x,t) = w_1(x) + v(x,t)$

gives two coupled second order nonlinear differential equations governing the motion of the piezoelectric buckled beam

Where the output voltage is related to the flux linkage $V = -\dot{\lambda}$

NiPS Summer School 2015 – July 7-12th -Fiuggi (Italy) – F. Cottone

the initial buckling shape function is

 $\psi(x) = h_0 (1 - \cos(2\pi x / L)) / 2$

by applying Euler-Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial \mathfrak{L}}{\partial \dot{q}}\right) - \frac{\partial \mathfrak{L}}{\partial q} = F(t), \quad \frac{d}{dt}\left(\frac{\partial \mathfrak{L}}{\partial \dot{\lambda}}\right) - \frac{\partial \mathfrak{L}}{\partial \lambda} = I(t)$$

$$\begin{cases} m\ddot{q} + c\dot{q} + k_{3}q^{3} + (k_{2} - k_{1}V)q + k_{0}V = -\eta \ddot{z}, \\ \ddot{V} + \frac{2}{R_{L}C_{p}}V = 2\frac{k_{0}}{C_{p}}\dot{q} - 2\frac{k_{1}}{C_{p}}q\dot{q}. \end{cases}$$

Experimental and numerical results

Cottone, F., L. Gammaitoni, H. Vocca, M. Ferrari & V. Ferrari (2012) Smart materials and structures, 21, 2012.

Nonlinear electromagnetic generators for wide band vibrational energy harvesting

Figure 2. Photographs of the BEMG prototype for the (a) single centrally loaded-beam clamping configuration, (b) double-beam clamping configuration, and (c) scheme of the testing equipment. BEMG: beam electromagnetic generator; PC: personal computer; DAQ: data acquisition.

 $+-- h_0 = 0.2 \text{ mm}$ $-h_0 = 0.3 \text{ mm}$ tential energy U (J) $+-h_0 = 0.4 \text{ mm}$ $h_0 = 0.5 \text{ mm}$ 0.5 -0.5 Pot -1 -1.5 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Midpoint deflection, q (mm)

Figure 3. Potential energy of the system for increasing values of buckling height $h_{\rm 0}.$

$$\begin{aligned} \frac{d^2 \tilde{q}(\tau)}{d\tau^2} + \frac{1}{Q} \frac{d\tilde{q}(\tau)}{d\tau} + \tilde{q}(\tau) + \tilde{q}^3(\tau) + \tilde{V}(\tau) &= -\frac{d^2 \tilde{y}(\tau)}{d\tau^2}, \\ \frac{d\tilde{V}(\tau)}{d\tau} + \frac{1}{\gamma} \tilde{V}(\tau) &= k_{em}^2 \frac{d\tilde{q}}{d\tau}, \\ \gamma &= \omega_0 / (\omega_R + \omega_L) \qquad k_{em}^2 = \frac{\lambda^2}{k_1 L_c} = \frac{(Bl)^2}{k_1 L_c}. \qquad k_{pz}^2 = \frac{\alpha^2}{k_1 C_c} \end{aligned}$$

Nonlinear electromagnetic generators for wide band vibrational energy harvesting

Figure 6. Experimental comparison of unbuckled- and buckled-beam ($h_0 = 0.3 \text{ mm}$) generators for up (left column) and down (right column) frequency sweeps with acceleration amplitudes of 0.1, 0.2, and 0.5 g_{rms} . (a and b) *rms* voltage and (c and d) the corresponding power dissipated across the optimal load resistance $R_L = 112 \Omega$.

Université Paris-Est, ESIEE Paris, Silicon MEMS electrostatic harvesters.

- Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F. and T. Bourouina. IEEE TRANSDUCERS 2013.
- R., Guillemet, Basset., P, Galayko, D., Cottone, F., Marty, F. and T. Bourouina. Conf. Proceeding IEEE MEMS 2013.

Guillemet, R., Basset, P., Galayko, D., Cottone, F., Marty, F., & Bourouina, T. (2013). *Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on* (pp. 817-820): IEEE.

Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013). 2013 Transducers & Eurosensors.

Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). Journal of Micromechanics and Microengineering 24(3), 035001

F. Cottone, P. Basset Université Paris-Est, ESIEE Paris, Silicon MEMS-based electrostatic harvesters.

Cottone, F., Basset, P., Guillemet, R., Galayko, D., Marty, F., & Bourouina, T. (2013). *Transducers & Eurosensors*.

Basset, P., Galayko, D., Cottone, F., Guillemet, R., Blokhina, E., Marty, F., & Bourouina, T. (2014). JMM 24(3), 035001.

Velocity-amplified mulitple-mass EM VEH

 $v_{2f} = \frac{(e+1)m_1v_{1i} + (m_2 - em_1)v_{2i}}{m_1 + m_2}$

if e = 1 and in the limit of $m_1 / m_2 \rightarrow \infty$,

the final velocity of the smaller mass is

In the case of equal but opposite initial velocities

 $v_{2f} = 2v_{1f} - v_{2i}$.

 $v_{2f} = -3v_{2i},$

which represents a gain factor of 3x in velocity.

(a)

Velocity-amplified mulitple-mass EM VEH

For a series of n-bodies of progressively smaller mass that impact sequentially, the velocity gain is proportional to n. (Rodgers et al., 2008)

$$G_n = (1 + e_{1,0}) \prod_{k=2}^n \left(\frac{1 + e_{k,k-1}}{1 + r_{k,k-1}} \right) - 1$$

Velocity-amplified mulitple-mass EM VEH

Velocity-amplified mulitple-mass EM VEH

Velocity-amplified mulitple-mass EM VEH

Velocity-amplified mulitple-mass EM VEH

Prototype 2 with transversal magnetic flux

University of Limerick (Ireland) and Bell-Labs Alcatel (USA).

F. Cottone, G. Suresh, J. Punch - "Energy Harvesting Apparatus Having Improved Efficiency". US Patent n. 8350394B2

Velocity-amplified mulitple-mass EM VEH

University of Limerick (Ireland) and Bell-Labs Alcatel (USA).

F. Cottone, G. Suresh, J. Punch - "Energy Harvesting Apparatus Having Improved Efficiency". US Patent n. 8350394B2

Comparison of various approaches

Strategies	Advantages	Disadvantages			
Mechanical tuning	• High efficiency	 Extra system and energy are required Responds to only one frequency at a time Slow response to a change in a vibration frequency 			
Change dimension	• Does not affect damping	 Difficult to implement Not suitable for tuning <i>in situ</i>^a 			
Change centre of gravity	 Does not affect damping 	• Not suitable for tuning in situ			
Change spring stiffness continuously	• Suitable for <i>in situ</i> tuning	• Consumes energy when generators work at resonance			
• Apply axial load (change spring stiffness intermittently)	 Easy to implement Suitable for <i>in situ</i> tuning No energy is required when generators work at resonance Damping is not affected when the tensile load is applied 	• Increased damping when the compressive load is applied			
Electrical tuning	 Easy to implement No energy is required when generators work at resonance Suitable for <i>in situ</i> tuning 	• Low tuning efficiency			
Widen bandwidth	 No tuning mechanism required Respond to different frequencies at the same time Immediate response to a change in vibration frequency 	• Complexity in design			
• Generator array	• Damping is not affected	Complexity in designLow volume efficiency			
• Use mechanical stopper	• Easy to implement	Fatigue problemDecrease in the maximum output power			
 Coupled oscillators 	Easy to implement	• Decrease in the maximum output power			
Nonlinear generators	• Better performance at excitation frequencies higher than resonant frequency	Complexity in designHysteresis			
Bi-stable structure	• Better performance at excitation frequencies much lower than resonant frequency	• Complexity in design			

^a Tuning while the generator is mounted on the vibration source and working.

Zhu, D., Tudor, M. J., & Beeby, S. P. (2010).

Performance metrics

Mitcheson, P. D., E. M. Yeatman, et al. (2008). Proceedings of the IEEE 96(9): 1457-1486.

Conclusions

- Marriage between Energy harvesting systems and Zero-power Technology will enable autonomous WSN applications
- Energy harvesting systems can be improved by:
 - Nonlinear dynamic: Bistable systems, freqeuncy-up converters, impacting masses, electrostatic softening
 - Innovative electro-active materials (electrets, lead-free piezo)
 - Miniaturization
- Zero-Power Technology has plenty of room for improvement at level of
 - Low-consumption components,
 - Efficient conditioning.

Current technical challenges

Miniaturization issues

- Improvements of piezoelectric-material properties
- Improving capacitive design
- Increasing magnetic filed in micro magnets
- Research on electrets materials

• Efficient conditioning electronics

- Efficient Integrated design
- Power-aware operation of the powered device

• Target applications

• Tailoring the WSN technology to specific applications

Acknowledgments

50